Basics of Definite Integral

IMPORTANT

Basics of Definite Integral: Overview

This topic covers concepts such as Definite Integral, Basics of Definite Integrals, First Fundamental Theorem of Integral Calculus, Geometrical Interpretation of Definite Integrals, Proper Definite Integrals, Improper Definite Integrals, etc.

Important Questions on Basics of Definite Integral

HARD
IMPORTANT

If y=x1xlntdt, then the value of dydx at x=e is

HARD
IMPORTANT

If ϕ x=cosx-0xx-t ϕ tdt. Then find the value of ϕ''x+ϕx.

HARD
IMPORTANT

I=0πx2 sin2xsinπ2cosx2x-π dx

HARD
IMPORTANT

If π4π3sin3θ-cos3θ-cos2θsinθ+cosθ+cos2θ2007sinθ2009cosθ2009dθ=a+bd-1+cdd, where a, b, c  and d are all positive integers. Then the value of (a+b+c+d) is

MEDIUM
IMPORTANT

The value of : 024x2dx would be:

MEDIUM
IMPORTANT

The value of 1e37πsin(πnx)xdx is

EASY
IMPORTANT

The value of  1e37πsinπlnxxdx  is:

HARD
IMPORTANT

Let f be a non-negative function defined on the interval [ 0,1 ]. If  0x1(f'(t))2dt=0xf(t)dt,0x1,  and   f(0)=0,  then:

EASY
IMPORTANT

The value of the integral 0 1 1x 1+x dx is

MEDIUM
IMPORTANT

The value of the integral 0 1 1x 1+x dx is

MEDIUM
IMPORTANT

The value of the integral e1e2logexxdx is

EASY
IMPORTANT

Let   f(x)=x[x],  for every real number x, where [x] is the integral part of x. Then 1 1 f(x) dx is

EASY
IMPORTANT

Let  fx=xx,  for every real number x, where [x] is the integral part of x. Then  11f(x)dx is:

MEDIUM
IMPORTANT

If fx=Asinπx2+B, f'12=2 and01fxdx=2Aπ, then constants A and B are respectively 

MEDIUM
IMPORTANT

fx=Asinπx2+B, f'12=2 and01fxdx=2Aπ, then constants A and B are

HARD
IMPORTANT

The value of 0π/4sinx+cosx9+16sin2xdx is

 

HARD
IMPORTANT

If  sinx1t2f(t)dt=1sinx, then f(13)  is:

MEDIUM
IMPORTANT

If In=0π4tannxdx, then 1I2+I4,1I3+I5,1I4+I6, form

HARD
IMPORTANT

The value of the integral π2πsin3x2sinx2dx is

HARD
IMPORTANT

The integral 012ex2-x2(1-x)32(1+x)12dx is equal to